OVERVIEW
Glaucoma surgery is intended to reduce intraocular pressure (IOP) when the target IOP cannot be reached with medications. Due to complications with established surgical approaches such as trabeculectomy, alternative surgical treatments such as transluminal dilation by viscocanalostomy and canaloplasty are being evaluated for patients with glaucoma.

MEDICAL CRITERIA
Not applicable

PRIOR AUTHORIZATION
Not applicable

POLICY STATEMENT
BlueCHiP for Medicare and Commercial Products
Canaloplasty may be considered medically necessary as a method to reduce intraocular pressure in patients with chronic primary open-angle glaucoma under the following conditions:
- Medical therapy has failed to adequately control intraocular pressure, AND
- The patient is not a candidate for any other intraocular pressure–lowering procedure (e.g., trabeculectomy or glaucoma drainage implant) due to a high risk for complications.

BlueCHiP for Medicare
Canaloplasty is not covered under all other conditions, including angle-closure glaucoma, as the evidence is insufficient to determine the effects of the technology on health outcomes.

Viscocanalostomy is not covered as the evidence is insufficient to determine the effects of the technology on health outcomes.

Commercial Products
Canaloplasty is considered not medically necessary under all other conditions, including angle-closure glaucoma, as the evidence is insufficient to determine the effects of the technology on health outcomes.

Viscocanalostomy is considered not medically necessary as the evidence is insufficient to determine the effects of the technology on health outcomes.

COVERAGE
Benefits may vary between groups/contracts. Please refer to the appropriate Benefit Booklet, Evidence of Coverage, or Subscriber Agreement for applicable surgery not medically necessary/not covered benefits/coverage.

BACKGROUND
IMPAIRED AQUEOUS HUMOR DRAINAGE
In the primary (conventional) outflow pathway from the eye, aqueous humor passes through the trabecular meshwork, enters a space lined with endothelial cells (Schlemm canal), drains into collector channels, and
then into the aqueous veins. Increases in resistance in the trabecular meshwork and/or the inner wall of Schlemm canal can disrupt the balance of aqueous humor inflow and outflow, resulting in an increase in IOP and glaucoma risk.

Treatment

Surgical intervention may be indicated in patients with glaucoma when the target IOP cannot be reached pharmacologically. Trabeculectomy (guarded filtration surgery) is the most established surgical procedure for glaucoma, allowing aqueous humor to directly enter the subconjunctival space. This procedure creates a subconjunctival reservoir with a filtering “bleb” on the eye, which can effectively reduce IOP, but is associated with numerous and sometimes sight-threatening complications (e.g., leaks, hypotony, choroidal effusions and hemorrhages, hyphemas, or bleb-related endophthalmitis) and long-term failure. Other surgical procedures (not addressed herein) include trabecular laser ablation and deep sclerectomy, which removes the outer wall of Schlemm canal and excises deep sclera and peripheral cornea.

More recently, the Trabectome™, an electrocautery device with irrigation and aspiration, has been used to selectively ablate the trabecular meshwork and inner wall of Schlemm canal without external access or creation of a subconjunctival bleb. IOP with this ab interno procedure is typically higher than the pressure achieved with standard filtering trabeculectomy. Aqueous shunts may also be placed to facilitate drainage of aqueous humor. Complications of anterior chamber shunts include corneal endothelial failure and erosion of the overlying conjunctiva.

Alternative nonpenetrating methods that are being evaluated for glaucoma are viscocanalostomy and canoplasty. Viscocanalostomy is a variant of deep sclerectomy and unroofs and dilates Schlemm canal without penetrating the trabecular meshwork or anterior chamber. A high-viscosity viscoelastic solution, such as sodium hyaluronate, is used to open the canal and create a passage from the canal to a scleral reservoir. It has been proposed that viscocanalostomy may lower IOP while avoiding bleb-related complications.

Canaloplasty was developed from viscocanalostomy and involves dilation and tension of Schlemm canal with a suture loop between the inner wall of the canal and the trabecular meshwork. This ab externo procedure uses the iTapp™ illuminated microcatheter (iScience Interventional) to access and dilate the length of Schlemm canal and to pass the suture loop through the canal. An important difference between viscocanalostomy and canoplasty is that canoplasty attempts to open the entire length of Schlemm canal, rather than one section of it.

Because aqueous humor outflow is pressure-dependent, the pressure in the reservoir and venous system is critical for reaching the target IOP. Therefore, some procedures may not be able to reduce IOP below the pressure of the distal outflow system used (e.g., below 15 mm Hg), and are not indicated for patients for whom very low IOP is desired (e.g., those with advanced glaucoma).

Health outcomes of interest are the IOP achieved, reduction in medications, ability to convert to trabeculectomy if the procedure is unsuccessful, complications, and durability of the procedure.

In 2004, iTapp™ (iScience Interventional) was cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process as a surgical ophthalmic microcannula that is indicated for the general purpose of “fluid infusion and aspiration, as well as illumination, during surgery.” In 2008, iTapp™ was cleared by the Food and Drug Administration for “catheterization and viscodilation of [the] Schlemm canal to reduce intraocular pressure in adult patients with open angle glaucoma.”

For individuals who have open-angle glaucoma who have failed medical therapy who receive viscocanalostomy, the evidence is sufficient to determine that the technology is unlikely to improve the net health outcome. For individuals who have open-angle glaucoma who have failed medical therapy who receive canoplasty, the evidence is insufficient to determine the effects of the technology on health outcomes.
CODING
BlueCHiP for Medicare and Commercial Products
The following codes are considered medically necessary:
66174 Transluminal dilation of aqueous outflow canal; without retention of device or stent
66175 Transluminal dilation of aqueous outflow canal; with retention of device or stent
Note: When these codes are used to report Viscoanalostomy, they are not covered for BlueCHiP for Medicare and not medically necessary for Commercial Products.

RELATED POLICIES
Aqueous Shunts and Stents for Glaucoma

PUBLISHED
Provider Update, November/December 2018
Provider Update, November 2017
Provider Update, July 2016
Provider Update, December 2015
Provider Update, November 2014

REFERENCES

15. Koerber NJ. Canaloplasty in one eye compared with viscoanalostomy in the contralateral eye in patients with bilateral open-angle glaucoma. J Glaucoma. Feb 2012;21(2):129-134. PMID 21278587

